Scalable model-based cluster analysis using clustering features
نویسندگان
چکیده
We present two scalable model-based clustering systems based on a Gaussian mixture model with independent attributes within clusters. They first summarize data into sub-clusters, and then generate Gaussian mixtures from their clustering features using a new algorithm — EMACF. EMACF approximates the aggregate behavior of each sub-cluster of data items in the Gaussian mixture model. It provably converges. The experiments show that our clustering systems run one or two orders of magnitude faster than the traditional EM algorithm with few loss of accuracy.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملAn Expectation-Maximization Algorithm Working on Data Summary
Scalable cluster analysis addresses the problem of processing large data sets with limited resources, e.g., memory and computation time. A data summarization or sampling procedure is an essential step of most scalable algorithms. It forms a compact representation of the data. Based on it, traditional clustering algorithms can process large data sets efficiently. However, there is little work on...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملScaling-Up Model-Based Clustering Algorithm by Working on Clustering Features
In this paper, we propose EMACF (Expectation-Maximization Algorithm for Clustering Features) to generate clusters from data summaries rather than data items directly. Incorporating with an adaptive grid-based data summarization procedure, we establish a scalable clustering algorithm: gEMACF. The experimental results show that gEMACF can generate more accurate results than other scalable cluster...
متن کاملScalable Community Detection through Content and Link Analysis in Social Networks
Social network analysis is an important problem that has been attracting a great deal of attention in recent years. Such networks provide users many different applications and features; as a result, they have been mentioned as the most important event of recent decades. Using features that are available in the social networks, first discovering a complete and comprehensive communication should ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 38 شماره
صفحات -
تاریخ انتشار 2005